Riemann Surfaces, Plane Algebraic Curves and Their Period Matrices

نویسندگان

  • Patrizia M. Gianni
  • Mika Seppälä
  • Robert Silhol
  • Barry M. Trager
چکیده

The aim of this paper is to present theoretical basis for computing a representation of a compact Riemann surface as an algebraic plane curve and to compute a numerical approximation for its period matrix. We will describe a program Cars ((3]) that can be used to deene Riemann surfaces for computations. Cars allows one also to perform the Fenchel{Nielsen twist and other deformations on Riemann surfaces. Almost all theoretical results presented here are well known in classical complex analysis and algebraic geometry. The contribution of the present paper is the design of an algorithm which is based on the classical results and computes rst an approximation of a polynomial representing a given compact Riemann surface as a plane algebraic curve and further computes an approximation for a period matrix of this curve. This algorithm thus solves an important problem in the general case. This problem was rst solved, in the case of symmetric Riemann surfaces, in 15].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Riemann matrices of algebraic curves

A black-box program for the explicit calculation of Riemann matrices of arbitrary compact connected Riemann surfaces is presented. All such Riemann surfaces are represented as plane algebraic curves. These algebraic curves are allowed to have arbitrary singularities. The method of calculation of the Riemann matrix is essentially its deenition: we numerically integrate the holomorphic diierentia...

متن کامل

Visualizing the Unit Ball for the Teichmüller Metric

We describe a method to compute the norm on the cotangent space to the moduli space of Riemann surfaces associated to the Finsler Teichmüller metric. Our method involves computing the periods of abelian double covers and is easy to implement for Riemann surfaces presented as algebraic curves using existing tools for approximating period matrices of plane algebraic curves. We illustrate our meth...

متن کامل

On the Teichmüller geodesic generated by the L-shaped translation surface tiled by three squares

We study the one parameter family of genus 2 Riemann surfaces defined by the orbit of the L-shaped translation surface tiled by three squares under the Teichmüller geodesic flow. These surfaces are real algebraic curves with three real components. We are interested in describing these surfaces by their period matrices. We show that the only Riemann surface in that family admitting a non-hyperel...

متن کامل

Computing on Riemann Surfaces

These notes are a review on computational methods that allow us to use computers as a tool in the research of Riemann surfaces, algebraic curves and Jacobian varieties. It is well known that compact Riemann surfaces, projective algebraiccurves and Jacobian varieties are only diierent views to the same object, i.e., these categories are equivalent. We want to be able to put our hands on this equ...

متن کامل

Geodesics, Periods, and Equations of Real Hyperelliptic Curves

In this paper we start a new approach to the uniformization problem of Riemann surfaces and algebraic curves by means of computational procedures. The following question is studied: Given a compact Riemann surface S described as the quotient of the Poincaré upper half-plane divided by the action of a Fuchsian group, find explicitly the polynomial describing S as an algebraic curve (in some norm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 1998